Simulating Adaptive Control Strategies in Large Urban Networks
نویسندگان
چکیده
This paper describes a scalable approach to simulation of decentralized adaptive signal control systems, motivated by our interest to provide a basis for assessing the benefit of the Surtrac adaptive signal control system at a potential deployment site in advance of installation. The approach centers around a simulation controller interface called VISCO, which links the VISSIM microscopic traffic simulator to a set of externally hosted local intersection control processes. Local control processes are free to communicate with each other and exchange control information in the same manner that they would in a field implementation. VISCO coordinates all interaction with the simulator process to create a distributed software-in-the-loop simulation architecture. To illustrate and analyze the efficacy of the approach, we summarize a simulation analysis that was conducted of the downtown triangle area of Pittsburgh PA. A 63-intersection VISSIM model of this site is described and analyses are presented to characterize both the efficiency of the distributed architecture and the potential utility of Surtrac adaptive control. With respect to the former, the distributed simulation of local Surtrac control processes is found to run in roughly 4.4 times faster than real-time, in comparison to the 14.4 times faster than realtime speed that a conventional VISSIM simulation of this model with fixed timing plans performed. Experiments also show that the VISCO distributed architecture is effective in significantly reducing the cost associated with VISSIM’s external COM interface. With respect expected improvement of adaptive signal control in the downtown triangle area of Pittsburgh, the simulation analysis shows strong benefit of Surtrac over both the existing timing plans in use in this area and Synchro optimized plans that were generated with perfect knowledge of traffic volumes and turning counts. Isukapati, Arvind, Barlow, Shaw, Smith, Rubinstein 3
منابع مشابه
Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملSimulating urban expansion in the parcel level for all Chinese cities
Large-scale models are generally associated with big modelling units in space, like counties or super grids (several to dozens km). Few applied urban models can pursue largescale extent with fine-level units simultaneously due to data availability and computation load. The framework of automatic identification and characterization parcels developed by Long and Liu (2013) makes such an ideal mod...
متن کاملPower Allocation Strategies in Block-Fading Two-Way Relay Networks
This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...
متن کاملOptimal Signal Control in Urban Road Networks with High Priority Congested Centers
Keeping the density of traffic flow and air pollution in an acceptable level and developing a good capacity for transit in the high priority areas of the city, is really a big deal in large and crowded cities. To address this problem, a new method of intersection signal optimization is presented in this paper. Based on network fundamental diagrams, an Internal–External Traffic Metering Strategy...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کامل[Article] Coupling traffic models on networks and urban dispersion models for simulating sustainable mobility strategies
The aim of the present paper is to investigate the viability of macroscopic traffic models for modeling and testing different traffic scenarios, in order to define the impact on air quality of different strategies for the reduction of traffic emissions. To this aim, we complement a well assessed traffic model on networks [13] with a strategy for estimating data needed from the model and we coup...
متن کامل